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Hierl et al. measure cross sections and product distributions
for reactions involving selectively solvated anions with certain
neutral molecules.1 Among the reactions considered is nucleo-
philic displacement. For nucleophilic displacement, the frac-
tional abundance of the solvated product at collision energyET
is defined as the cross section for X-(H2O) formation divided
by the sum of cross sections for X- and X-(H2O) formation at
that collision energy. In Figure 8 of their paper, Hierl et al.
display the relationship of the energy dependence of fractional
abundancef(ET) for the nucleophilic displacement reaction of
OH-(H2O) with CH3Cl.
Hierl et al. use a previously proposed empirical relation2 to

quantify the relationship between fractional abundance and
collision energy (ET):

The authors state that the linearity of the semilogarithmic
plot in their Figure 8 demonstrates the accuracy of the empirical
relation. From their plot, one can see that a good linear
relationship between the variables is present for collision
energies between 0.1 and about 1.1 eV and that this line is
extrapolated to the two axes of the plot. This line is based on
a fit to the means of replicate measurements at various collision
energies. One could also use the variability at each collision
energy as a weighting factor in the model or fit the equation to
all of the replicate measurements rather than the means. For
example, a weighted analysis would be quite effective for the
data shown in the Hierl et al. Figure 9. Close inspection of the
regression fits to the Figure 8 data reveals that the residuals
(observed minus fitted values) exhibit a relatively low magnitude
but noticeable periodic behavior, even over the limited range
of data on which the line in the Hierl et al. Figure 8 is based
(see Figure 1). This nonrandom pattern may indicate the need
for modification of the model. Also, the straight line shown in
the plot does not quantify the relationship between fractional
abundance and collision energy over the entire range of
hyperthermal energies considered in the Hierl et al. beam study.
We initially propose an empirical relation of the form

In Figure 2, the dashed curve is the fitted relation between
fractional abundance and collision energy for all of the Hierl et
al. data shown in their Figure 8 using eq 2 with a value ofm)
2. The solid line shown is the linear fit to the 0.1-1.1 eV data
given in their Figure 8 from eq 1, extrapolated slightly for better

visual separation. The residual plot for them ) 2 case still
indicates some nonrandom (periodic) behavior, similar to the
pattern seen in Figure 1, but less pronounced. The overall fit
is very good; however, notice the tendency toward upward
curvature for the dashed curve as collision energy increases in
Figure 2. The observed data appear to level off in this region.
The extrapolation to thermal energies also exhibits this tendency
toward curvature. Increasingm to 6 results in an excellent fit,
with more accurate extrapolation to thermal energies, and nearly
random-looking residuals, but proceeding to this extent may
not be needed as discussed below. To improve the fit further,
we propose the following empirical model, which provides direct

f(ET) ) f 0 exp(-ET/E) (1)

f(ET) ) f 0 exp(-∑
j)1

m

(ET
j /Ej)) (2)

Figure 1. Residual plot from the linearized fit of eq 1 to the data
obtained in the range 0.1-1.1 eV from Figure 8 of Hierl et al.,1

fractional abundance of the solvated product Cl-(H2O) formed in the
nucleophilic displacement reaction of OH-(H2O) with CH3Cl; residuals
vs collision energy.

Figure 2. Fit of eq 2,m) 2, all data (dashed curve) compared to eq
1 fit, 0.1-1.1 eV data (solid line), extrapolated slightly for visual
separation; both equations linearized in the parameters, from Figure 8
of Hierl et al.,1 fractional abundance of the solvated product Cl-(H2O)
formed in the nucleophilic displacement reaction of OH-(H2O) with
CH3Cl vs collision energy.
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estimation off 0, extrapolates very accurately to thermal energies
and properly models the asymptotic behavior of the data as
collision energy increases:

Figures 3 and 4 display the fit of the data and the residual
plot for model (3). As expected, this model provides an
excellent fit. The residuals still display some nonrandom
behavior, but they are of such small magnitude that further
refinement of the model is not necessary.
In Table 1, regression diagnostics, including results of tests

for residual normality, homoscedasticity, and autocorrelation,
are presented, along with goodness-of-fit and multicollinearity
results for the regression models considered in Figures 2 and
3. These are the usual measures needed for evaluating any
regression analysis.3,4 From Table 1, it is evident that model
(3) provides the best fit, since all of the data are used, the
regression assumptions are satisfied, and the fitted curve and
residual plots exemplify the goodness of fit. Model (2) withm
) 2 also provides a good fit, though it does have the curvature
problem discussed previously.
Since relations 1-3 are empirical, the additional parameters

introduced by using (2) or (3) would not obscure the physical
meaning of the relationship. The parameterf 0 is still the
abundance estimated at zero collision energy. The difference
in using (2) withm > 1 is that thef 0 parameter is estimated
from an effectively polynomial model, since in practice,
equations like (1) and (2) are linearized (in the parameters) by
taking the natural logarithm of both sides, as they are intrinsi-

cally linear.3 Thus, the estimate off 0 is obtained as the natural
antilogarithm of the estimated intercept parameter in the
linearized model, and theEj parameter estimates are the negative
reciprocals of the parameters associated with theET

j variables.
TheEj would take the role ofE in the model (1) analysis and
would govern the curvature of the model. It is important to
remember that the usual assumptions about the residuals must
hold on the natural logarithm scale for the linearized versions
of models (1) and (2), not the original scale. Polynomial models
can be useful in determining empirical relationships, but certain
issues need to be considered. Adding independent variables to
a model will allow one to fit practically any smooth curve, but
there can be the problem of overfitting to a particular set of
data that would lack generality. Also, one must be cautious to
use goodness-of-fit measures like theadjusted R2, rather than
the usualR2 when judging the utility of higher order terms in
the model. Further, it is critical to avoid excessive extrapolation
of polynomial models to regions beyond the range of the data
used. Model (3) is estimated directly using nonlinear regression;
the estimate off 0 along with its standard error and confidence
interval can be obtained using any nonlinear regression program,
and the estimates ofθ1 andθ2 determine the curvature of the
model. Models (2) and (3) can easily incorporate weighting
factors based on replicate measurements, as discussed earlier
for model (1), and can be fit without subjectively restricting
the range of data as might be necessary when using model (1).
The f 0 values estimated from model (2), withm) 2, and from
model (3) are 0.32 and 0.24 (standard error) 0.01), respectively,
using all of the data (obtained by interpolation) in comparison

TABLE 1: Regression Diagnostics and Comparison of Models

residuals

model normal?a homoscedasticity indicated?b autocorrelation?c
goodness-of-fitd

(linearized models (1) and (2)) multicollinearitye

(1), 0.1-1.1 eV yes moderate moderate R2 ) 0.982
(2), all data,m) 2 yes slight moderate adjR2 ) 0.984 no
(3), all data yes negligible slight excellent; see Figures 3 and 4

aResiduals are normally distributed if thep value for the Shapiro-Wilk test is greater than 0.05. An assumption of regression analysis, for
making inferences about parameter estimates, is that the error terms (estimated by the residuals) are normally distributed.bHomoscedasticity (equal
variances of the residuals across the collision energies) is indicated if the residuals appear uniform across the range of collision energies. An
assumption of regression analysis is that the residuals are homoscedastic.cResiduals are not autocorrelated if the Durbin-Watson test statistic is
near the value 2. An assumption of regression analysis is that the residuals are not autocorrelated.d R2 is the proportion of variation in the data
explained by alinear model with an intercept term; “adj” means adjusted for the extra term(s) in the model.R2 ranges from 0 to 1, 1 indicating
a perfect fit.eMulticollinearity (a linear dependence among independent variables) would indicate that there is some redundancy among the independent
variables.

Figure 3. Fit of eq 3, all data, from Figure 8 of Hierl et al.,1 fractional
abundance of the solvated product Cl-(H2O) formed in the nucleophilic
displacement reaction of OH-(H2O) with CH3Cl vs collision energy.

f(ET) ) f 0 + θ1(1- exp(-θ2ET)) (3)

Figure 4. Residual plot from the fit of eq 3 to all of the data from
Figure 8 of Hierl et al.,1 fractional abundance of the solvated product
Cl-(H2O) formed in the nucleophilic displacement reaction of OH-(H2O)
with CH3Cl; residuals vs collision energy.
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to the value of 0.25 obtained by Hierl et al. on the “linear
portion” of the data from their Figure 8.
Thus, by generalizing model (1), as is done in model (2), or

by using a new empirical relation, described by model (3), beam
data from bimolecular nuclear substitution reactions can be used
to extrapolate to thermal energy, allowing comparison to the
fractional abundance obtained by selected-ion flow tubes (SIFT)
and other techniques.
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